September 30th, 2006


Body Worlds creator uses corpse for crucifixion

The Black Earth

Body Worlds creator uses corpse for crucifixion
By Bo Wilson, Evening Standard 21.09.06

Channel 4 is to broadcast a documentary showing a human corpse being hung on a cross to depict Christ's suffering.

Anatomist Gunther von Hagens will use a real body to show how people died when crucified in the 90-minute film.

The programme, Crucifixion, is already causing controversy, with Christians condemning it as blasphemous and one group threatening prosecution.

Although Channel 4 insists the body will not represent Christ specifically, a memo leaked to the Evening Standard states that it would indeed portray Jesus.

Von Hagens, who created the Body Worlds exhibits using his preservation technique of plastination, has been widely criticised for his work, which included an autopsy on TV in 2002. This is the first time he has touched on religion.

Steve Jenkins, spokesman for the Church of England, said: "This will upset and offend a lot of Christians as it seems he is using the Crucifixion simply to grab attention."

Christian Voice, which led the protest against broadcasting Jerry Springer The Opera, has announced it may prosecute on grounds of disrespect to Christ. Director Stephen Green said: "This sounds gratuitously offensive and blasphemous. It could well be we would want to take some action against it."

Crucifixion will be broadcast on More4. Filming has not yet started. A spokeswoman for Channel 4 said: "This is a science documentary, a history documentary on the anatomy after crucifixion. It will not be a specific representation of Christ."

But the production company making the film, Firefly, describes the portrayal as just that. In a document, Crucifixion was described as "a 90-minute film for More4 in which Gunther plastinates 'Jesus' ".

Firefly has produced programmes such as the BBC's The Thieving Headmistress. Producer Nick Curwin warned employees to keep Crucifixion under wraps. They were told that the programme and otherswere "highly confidential".

Despite Channel 4's insistence that von Hagens's work is educational, Mr Curwin also described the shock value of another programme, Gunther's ER. He said: "Gunther-choppingupbodies-in-front-of-an-audience series was also commissioned."

Though he has only an honorary professorship, von Hagens uses the title and last year was fined for doing so. In January 2004, German magazine Der Spiegel claimed he had used bodies from Chinese executions. He said he did not know where they had come from.

• Research into crucifixion has involved other scientists hanging cadavers to a cross, such as Pierre Barbet in the Thirties. The Royal Academy of Arts has a cast of a man on a cross - the corpse belonged to murderer James Legg, executed in 1801.

  • Current Music
    Leatherstrip: Serenade For The Dead
  • Tags

Lazarus Microbe's Immortality Secret Revealed

Nefarious News

Lazarus Microbe's Immortality Secret Revealed
By Ker Than, LiveScience Staff Writer

Scientists have discovered a novel genetic repair process that allows a hardy desert microbe to die and resurrect over and over again.

The finding, detailed in the Sept. 28 issue of the journal Nature, could lead to new forms of regenerative medicines and might even allow scientists to one day bring dead cells in our own bodies back to life.

Deinococcus radiodurans is a so-called extremophile bacterium that can survive intense bouts of heat and UV radiation that shatters its genome into hundreds of DNA fragments. Without a genome, the microbe is effectively dead because it can't synthesize the proteins necessary for life.

Toward Immortality

Living forever, or at least well past 100, is within reach of today's youngest generation, some scientists say. In this three-day series, LiveScience looks at the implications of the path toward immortality.

In only a few hours, though, Deinococcus can reassemble its genome and return to life.

"This is the first case, I think, of a living cell that clinically dies—its DNA is chopped into little pieces and it has no metabolism—when desiccated, and yet, as long as it can reconstitute its genome, it reconstitutes its own life," said study team member Miroslav Radman of Paris University in France.

The microbe is able to perform its remarkable feat because, like other bacteria, it carries at least two, sometimes more, copies of its genome and also because radiation damages DNA randomly. So even if both genome copies are damaged, they likely aren't damaged in the same spots. With the right tools, a microbe can piece together what the original sequence was.

Returning to life

Here's how it works: When it initially shatters, Deinococcus' genome is broken apart into numerous double-stranded DNA fragments. Proteins chew away at the ends of the fragments, creating overhanging single-stranded DNA "tails." The tails are called "sticky-ends" because they can combine with each other. To work, the sticky-ends have to contain complimentary DNA sequences.

DNA is made up of four bases, or "letters," that combine in specific ways: A always pairs with T and G with C. So if the sequence on one tail is ATG, it can pair with another tail whose sequence is TAC. Two complimentary sticky ends will naturally fit together like toy Lego blocks.

The sticky-ends allow sequential DNA fragments to be joined together to form linear, double-stranded intermediate pieces. A protein then arranges the double-stranded pieces into the types of circular chromosomes which are characteristic of bacteria.

"Once the genome is reconstituted, the cell can synthesize [again] all of its proteins, lipids and membranes and the cell resurrects," Radman said.

Potential human applications

Although the basic mechanism behind Deinococcus' hardiness is understood, many mysteries still remain. For one, proteins are needed for DNA repair and synthesis, but proteins can be damaged by radiation, too. It's one thing to piece together a broken genome, but how does Deinococcus do it with broken tools?

"That's still a mystery," Radman told LiveScience. "How, after months of desiccation and burning from UV sunlight in the desert, is there still sufficient protein activity to start reconstituting DNA? We don't know."

One possibility is that Deinococcus' proteins are resistant to dehydration sort of like how proteins in thermophile bacteria are resistant to temperature.

Radman believes his team's findings open up the possibility of resurrecting dead cells in our own bodies, specifically those in our brains.

"It allows us now, legitimately, to dream of bringing back to life dead or close to dead neurons," he said.

Unique strategy

Unlike most bacteria studied in biology, such as E. coli and salmonella, Deinococcus is a slow grower. It didn't evolve to divide rapidly, but to be robust.

"It sort of went the other way of capitalism—it doesn't care about growth and fast division because it doesn't need to compete in the desert with anybody," Radman said. "So in that sense, Deinococcus is the bacterial paradigm of neurons, which [usually] don't divide during our lifetimes."

Like Deinococcus, neurons carry two—albeit slightly different—copies of their genomes: one from Mom and the other from Dad. In fact, all the cells in our bodies except sperm and egg contain two genome copies. Therefore, it's possible that one day scientists could resurrect dead neurons using repair mechanisms similar to those employed by Deinococcus, Radman said.

"Deinococcus has found a way of putting its genome back together, and in that sense, could ring a bell for regenerative medicine in the future," he said.

  • Current Music
    Dracula Soundtrack by Kilar